기저(7)
-
선형대수학 시리즈 43편(쌍대기저)
이번 편은 쌍대공간의 기저를 구해볼 겁니다. 그럼 시작하겠습니다. 쌍대공간의 정의는 선형대수학 시리즈 41편(쌍대공간의 차원)이번 편은 쌍대공간의 차원에 대해 알아볼 겁니다. 그럼 시작하겠습니다. 선형범함수의 정의는 다음과 같다.이에 대한 증명은 대수구조 체 시리즈 4편(체로 만든 벡터공간)이번 편은pilgigo.tistory.com여기를 참고해 주세요. 쌍대기저의 정의는 다음과 같다. 좌표함수의 정의는 다음과 같다. 이번에 소개할 정리는 다음과 같다. 이제 증명해 보자.이다.이에 대한 증명은 선형대수학 시리즈 41편(쌍대공간의 차원)이번 편은 쌍대공간의 차원에 대해 알아볼 겁니다. 그럼 시작하겠습니다. 선형범함수의 정의는 다음과 같다.이에 대한 증명은 대수구조 체 시리즈..
2024.12.05 -
선형대수학 시리즈 30편(기저와 선형변환 관계 심화버전)
이번 편은 기저와 대응되는 모든 경우에서 선형변환 존재 가능성에 대해 알아볼 겁니다. 그럼 시작하겠습니다. 정리를 소개하기 전 다음과 같은 두 표기 방법을 정의하자. 이번에 소개할 정리는 다음과 같다. 참고로그리고 좌표벡터의 정의는 선형대수학 시리즈 36편(좌표벡터)이번 편은 좌표벡터에 대해 알아볼 겁니다. 그럼 시작하겠습니다. 이에 대한 증명은 선형대수학 시리즈 10편(선형독립의 성질 행렬 표현으로 해석)이번 편은 선형독립의 성질에 대해 알pilgigo.tistory.com여기를 참고해 주세요. 증명을 하기에 앞서 몇가지 이해를 돕기 위한 내용들을 알아보자. 첫 번째 내용은 다음과 같다.두 번째 내용은 다음과 같다. 세 번째 내용은 다음과 같다.이므로이다.그러므로 이 내용들을..
2024.10.11 -
선형대수학 시리즈 22편(기저와 선형변환 관계)
이번 편은 기저와 선형변환 관계를 알아볼 겁니다. 그럼 시작하겠습니다. 이번에 소개할 정리는 다음과 같다. 필요충분조건을 증명하는 것이므로 다음 두 명제를 증명하면 된다.두 번째 명제는 자명하게 참이므로 증명을 생략하고 첫 번째 명제만 증명하자. 첫 번째 명제의 증명은 다음과 같다. 고로 다음과 같은 계산을 할 수 있다.따라서첫 번째 명제의 증명이 끝났다. 첫 번째 명제도 참이고 두 번째 명제도 참 이므로 필요충분조건이 될 수 있다.
2024.08.21 -
선형대수학 시리즈 18편(상공간과 기저의 관계)
이번 편은 상공간과 기저의 관계인 정리를 알아볼 겁니다. 그럼 시작하겠습니다. 이번에 소개할 정리는 다음과 같다. 이제 증명해 보자. 그러면 다음과 같은 계산을 할 수 있다.이므로이다.
2024.06.19 -
선형대수학 시리즈 11편(기저의 원소의 개수 같음)
이번 편은 기저의 원소 개수가 같음에 대해 증명해 볼 겁니다. 그럼 시작하겠습니다. 이번에 소개할 정리는 다음과 같다. 이제 증명해 보자. 이번에 소개한 정리를 다시말하자면 다음과 같다.이를 증명하면 소개한 정리가 증명된다. 그러므로 다음과 같이 식을 세울 수 있다. 행렬 곱은 결합법칙을 만족하므로 이러한 계산이 가능하다. 행렬 곱의 결합법칙에 대한 증명은 행렬 곱의 결합법칙이번 편은 행렬 곱의 결합법칙에 대해 증명해 볼 겁니다. 그럼 시작하겠습니다. 이번에 소개할 정리는 다음과 같다. 이제 증명해 보자. 행렬 A, B, C, X, Y, N, M 에 대하여이라 하자.그러면 다pilgigo.tistory.com여기를 참고해 주세요.그러므로 다음과 같이 식을 표현할 수 있다.여기서이에 대..
2024.05.13 -
선형대수학 시리즈 9편(생성집합속 기저존재)
이번 편은 벡터공간을 생성하는 집합속에 기저를 포함함을 증명해 보겠습니다. 선형대수학 시리즈 8편은https://pilgigo.tistory.com/entry/%EC%84%A0%ED%98%95%EB%8C%80%EC%88%98%ED%95%99-%EC%8B%9C%EB%A6%AC%EC%A6%88-8%ED%8E%B8-%EA%B8%B0%EC%A0%80 선형대수학 시리즈 8편 (기저)이번 편은 기저에 대한 필요충분조건 정리를 알아보겠습니다. 그럼 시작하겠습니다. 이번에 알아볼 정리는 다음과 같다.이제 증명해 보자.반면에 해가 존재하면, G가 V를 생성할 수 있다.고pilgigo.tistory.com여기를 참고해 주세요. 그럼 시작하겠습니다. 이번 편에 소개할 첫 번째 정리는 다음과 같다.(단, G는 유한..
2024.05.12