대체정리(4)
-
선형대수학 시리즈 12.2편(12편 따름정리)
이번 편은 선형대수학 시리즈 11.2편의 따름정리를 알아볼 겁니다. 그럼 시작하겠습니다. 이번에 소개할 정리는 다음과 같다. 이제 증명해 보자.이에 대한 증명은 선형대수학 시리즈 12편(대체정리 두 번째 정리)이번 편은 대체정리 두 번째 정리를 증명해 보겠습니다. 그럼 시작하겠습니다. 대체정리는 다음과 같다. 첫 번째 명제의 증명은 선형대수학 시리즈 12편(대체정리 첫 번째 정리)이번 편은pilgigo.tistory.com여기를 참고해 주세요.이에 대한 증명은 선형대수학 시리즈 12편(대체정리 첫 번째 정리)이번 편은 대체정리를 알아볼 겁니다.대체정리에는 두 가지 정리가 있습니다.이번 편은 첫 번째만 증명하고나머지 두 번째는 다음 편에 증명하겠습니다. 그럼 시작하겠습니다. 대체정리pil..
2024.06.21 -
선형대수학 시리즈 12편(대체정리 두 번째 정리)
이번 편은 대체정리 두 번째 정리를 증명해 보겠습니다. 그럼 시작하겠습니다. 대체정리는 다음과 같다. 첫 번째 명제의 증명은 선형대수학 시리즈 12편(대체정리 첫 번째 정리)이번 편은 대체정리를 알아볼 겁니다.대체정리에는 두 가지 정리가 있습니다.이번 편은 첫 번째만 증명하고나머지 두 번째는 다음 편에 증명하겠습니다. 그럼 시작하겠습니다. 대체정리pilgigo.tistory.com여기를 참고해 주세요. 두 번째를 증명해보자. 이 명제와 동치인 명제는 다음과 같다.이 명제를 증명하면 된다. 그리고 증명에 필요한 두 보조정리를 알아보자.소개할 보조정리는 다음과 같다.이에 대한 증명은 선형대수학 시리즈 12.1편(12편 따름정리)이번 편은 대체정리 첫 번째 정리의 따름정리를 알아볼 겁니다. 그..
2024.05.24 -
선형대수학 시리즈 12편(대체정리 첫 번째 정리)
이번 편은 대체정리를 알아볼 겁니다.대체정리에는 두 가지 정리가 있습니다.이번 편은 첫 번째만 증명하고나머지 두 번째는 다음 편에 증명하겠습니다. 그럼 시작하겠습니다. 대체정리는 다음과 같다. 이제 증명해 보자. 첫 번째 명제부터 증명해 보자.이를 증명하기 위해표의 빈칸에 들어갈 집합의 존재 여부를 하나씩 알아볼 것이다. 참고로표에 있는 생성과 비생성 단어 뜻은 해당 집합이 벡터공간 V 을(를) 생성하느냐 안하느냐에 대한 뜻이다. 상식적으로비생성하면서 선형종속인 집합은 dim(V) 을(를) 초과하든지 미만이든지 관계없이 존재가능하다.(단, 점공간을 제외한다.) 그러므로임을 알 수 있다. 그리고 차원의 개념을 정의해 보자.기저의 원소 개수가 모두 같음에 대한 증명은 선형대수학 시리즈 11편(기저..
2024.05.23 -
선형대수학 시리즈 12.1편(12편 따름정리)
이번 편은 대체정리 첫 번째 정리의 따름정리를 알아볼 겁니다. 그럼 시작하겠습니다. 이번에 소개할 정리는 다음과 같다. 이제 증명해 보자. 첫 번째 명제부터 증명해 보자. 이 명제와 동치인 명제는 다음과 같다. 이 명제를 귀류법을 활용하여 증명해 보자.이에 대한 증명은 선형대수학 시리즈 7편(선형종속이 되기 위한 필요충분조건)이번 편은 선형종속이 되는 필요충분조건에 관한 정리를 소개하겠습니다. 선형대수학 시리즈 6편은 https://pilgigo.tistory.com/entry/%EC%84%A0%ED%98%95%EB%8C%80%EC%88%98%ED%95%99-%EC%8B%9C%EB%A6%AC%EC%A6%88-6%ED%8E%B8 pilgigo.tistory.com여기를 참고해 주세요. 다시말해..
2024.05.20